According to the Conservative Party manifesto the UK needs to build 300,000 new homes a year to deal with the ongoing housing crisis, an increase of over 50% compared to 2010 levels. 

Despite the desperate need for new homes, ramping up construction on this scale raises some obvious environmental concerns. Aside from land-use change, material waste and increased carbon emissions, increasingly there are concerns about the impact that the construction industry has on the quality of our air.   

According to the UK’s National Atmospheric Emissions Inventory, the construction industry has contributed to around 25% of the total nitrogen oxide (NOx) and particulate matter (PM2.5) pollution since 1970. 

Transport 

The construction industry contributes to air pollution in several ways but one major source is the transportation of goods and services. Using traditional methods of construction it takes around two years to build a standard family home with an average of 22 different subcontractors needed. 

This, plus the delivery of goods and materials means that there can be upwards of 30 different vehicles visiting a construction site on any one day. When you multiply this by 300,000, it means a lot of moving vehicles, all producing air pollutants.  

One solution for reducing the number of vehicles travelling backwards and forwards from a site is constructing the properties off-site using Modern Methods of Construction.

MMC is a process which focuses on off-site construction techniques, such as mass production and factory assembly. MMC can be more sustainable as homes are precision-engineered to create less waste and are built using sustainable materials. This approach also provides benefits by speeding up delivery, reducing labour costs and improving quality. This means MMC can ‘kill two birds with one stone’ by helping us to ramp up our construction output  without contributing to environmental pollution. 

Andrew Shepherd, Managing Director of TopHat Solutions, a leader in the Modern Methods of Construction space explains: ‘Our manufacturing takes place in Derbyshire, and everything is built and created in one location as homes are mechanically moved around the factory. 

‘The houses then arrive at the site 95% complete, meaning the time spent at the construction site is a fraction of what normally happens. The contracting industry is extremely transient meaning people may live in one area but drive multiple hours a day to work in another. We have found that the people working in our factory are much more likely to live nearby and get public transport to work. This means we are contributing to much less transport emissions in the first stage of delivery.’  

Modular houses and Modern Methods of Construction have gained significant interest in the last few years with investment from the likes of Legal & General and Goldmans Sachs boosting confidence in the industry. 

The UK government has also begun to implement policy to shift towards modular housing, with schemes such as the Home Building and Construction Corridor  encouraging market growth and allowing the supply of these structures to be produced.  

However, currently only 15,000 modular homes are built per year, a fraction of the 300,000 needed.  

Machinery  

In areas where off-site construction is not possible, there are still ways that the industry can reduce its contribution to air pollution. According to one estimate, 14% of particulate matter (PM2.5) produced from the construction industry comes from the machinery used.  

James Bellinger, Senior Air Quality Consultant at global design and planning firm ARUP explains that this is because a lot of the tools and machines used at construction sites are powered by diesel generators.  

In a recent literature review, researchers at ARUP highlighted several key areas where developers can reduce air pollution. These include:  

  • Having a low or zero emission equipment requirement 
  • Planning for the on-site provision of grid electricity 
  • Planning sites so they can be built to allow for zero emissions
  • Considering emissions and equipment choices during the design of a project 

Despite clear ways to improve the air pollution output, James explains that the construction industry still has a big issue with communication.  

‘A key area for improvement is actually in the planning stages that are between where a site is designed and before a contractor is appointed to do the work.  

‘Historically, those two stages don’t work that well together and that results in opportunities being missed in the design process. For example, electrical connection could be added to avoid the need for diesel generators but because this communication doesn’t happen we are left with a situation where the contractor is appointed to do the work in a set amount of time and realistically they’re not going to turn up and ask for changes to reduce air pollution because for them, time is money.’ 

It is clear that to meet our housing needs we not only need to ramp up the scale of construction but we also need to shake up how we do things. However, as said by Andrew Shepherd, ‘There is a lot of muscle memory in the industry. 

‘There are lots of senior decision makers that have over 30 years worth of experience in doing things in a certain way, so asking them to do something completely differently is very difficult. To achieve our goals, we all need to invest and support future solutions.’  

A new British invention, following the co-location of Coltraco Ultrasonics’ Physicists and Scientists at Durham University, a globally outstanding centre of teaching and research excellence, the handheld Portascanner® AIRTIGHT 520 is a completely unique technology able to compute air flow and air permeability, quantifying leak sites to complement an airtightness test. Designed during COVID-19 with support from UK Government COVID-19 Emergency Technology Funding and available for exporting globally now, the Portascanner® AIRTIGHT 520 builds on Coltraco’s long history in watertight integrity monitoring for the Royal Navy to deliver the Safeship™ at sea, applying our advanced understanding of fluid dynamics at sea to air flow dynamics to deliver the Safesite™ on land.

The unique ability to detect, locate and quantify air leaks, non-disruptively and without the need for any room pressurisation, in a complementary manner to existing Door Fan and Pulse Airtightness Testing, will enable users of the Portascanner® AIRTIGHT 520 to make sharper decisions, verify technical specifications, and reveal possible defects if design standards have not been met rapidly and reliably.

The Importance of Building Ventilation: Changing Standards in the Built Environment
Professor Catherine Noakes OBE, who sits on the UK Scientific Advisory Group for Emergencies (SAGE) states that “if we do invest as a nation [in ventilation], there’s a potential big win,” with the “long-term payback [of] improved health and productivity, and lower energy use.”
COVID-19 is essentially an indoor air crisis. Whilst vaccinations are a crucially important tactical response, they must be complemented by longer term strategies. To ensure Human Air Hygiene, and safeguard that basic human right, a continuous and assured access to pure, fresh air, every public building must have a Ventilation Strategy.
In its most basic form, the challenge of building ventilation centres around increasing the number of air changes per hour. However, the integrity of air filtration, and or air purification, can only reasonably be assured if all unwanted air infiltration through gaps, is sealed. Air flow measurement devices, such as the Portascanner® AIRTIGHT 520, that allow for frequent and regular detection, location and quantification of unwanted air leaks must therefore be integrated alongside existing airtightness testing equipment, to ensure the success of building ventilation strategies.
In addition to Human Air Hygiene, Fire Suppression, Thermal Comfort, Acoustic Insulation, and Insect and Pest Control are all integral aspects of the Built Environment which require a certain level of airtightness to be maintained, either to deliver the minimum number of air changes per hour, restrict the supply of oxygen to extinguish a fire, or lower energy consumption and waste.
Indeed, in a post-COP26 global environment, addressing the effects of climate change and making buildings more energy efficient and environmentally responsible is driving the construction industry towards “Build Tight Ventilate Right.” Buildings are a significant producer of carbon emissions, accountable for 35% of total energy consumption.
Testing for air leaks and simultaneously testing for watertightness with the Portascanner® AIRTIGHT 520, as water ingress seriously damages buildings and destroys electrical equipment, will improve build qualities, and reduce the costs of operating and maintaining the Built Environment.

The Portascanner® AIRTIGHT 520: Unique Technology to complement Existing Airtightness Testing
During Coltraco Ultrasonics’ long history in watertight integrity monitoring for the Royal Navy they learned that it was one thing to be able to identify large and microscopic leak sites, but that it was quite another to precisely locate and quantify the leak site through the structure concerned to determine the water flow rate. These are the crucial pieces of information required to assess the damage control risk overall in a ship’s watertight compartment, watertight door or watertight Multiple Cable Transit Area between bulkheads.
The Portascanner® AIRTIGHT 520 takes Coltraco Ultrasonics’ understanding of fluid dynamics at sea and applies it to air flow dynamics on land. They take the best ultrasonic technology in Coltraco’s hardware to identify leak sites with a microscopic level of accuracy and apply computer science to measure and quantify the leak-site by the Portascanner® AIRTIGHT 520’s algorithm, which also generates a value for the air flow rate through that leak and the building’s overall air permeability.
The ability to record and analyse these 4 factors makes the Portascanner® AIRTIGHT 520, a British lightweight, hand-held, and portable analytical instrument, a unique technology globally. The Portascanner® AIRTIGHT 520 has been invented to complement existing airtightness testing, typically achieved using a Door Fan Test or a Pulse Test, that is essential for measuring the integrity of the Built Environment.

Integrate Dynamically with Essential Existing Technologies to be Better-Faster-Cheaper: Testing the Portascanner® AIRTIGHT 520 at The Airtightness Testing and Measurement Association’s (ATTMA’s) Building Performance Hub
In January 2022, Coltraco Ultrasonics’ Daniel Dobrowolski (Senior Physicist) and Bernard Hornung (Head of Built Environment) joined Paul Jennings (Airtightness Specialist) and Dr Bill Bordass OBE (Building Scientist) to test the Portascanner® AIRTIGHT 520 in a full-sized house. Testing followed a Pulse Test and a Door Fan Blower Test, both of which the Portascanner® AIRTIGHT 520 is designed to complement.

The Portascanner® AIRTIGHT 520 performed outstandingly, being able to identify and quantify leaks that had been found with traditional basic methods of leak detection such as thermal cameras, smoke pencils and anemometers, but most importantly finding leaks that could not be found with any alternative method. A significant number of leaks were identified in window and door seals.

The Portascanner® AIRTIGHT 520 allows the ultrasonic quantification of leak sites in a depressurised environment, which has never been achieved before. Door Fan Testing or Pulse Testing can then be conducted at an appropriate moment, once detected leakage points have been identified and repaired. Uniquely, during these tests, the Portascanner® AIRTIGHT 520 allows the location and measurement of air leaks, facilitating remedial action that is precise, immediate, and often low-cost.

Furthermore, Buildings can be surveyed with a Portascanner® AIRTIGHT 520 before an air tightness test so that they have a better chance of passing and, if a building fails an airtightness test, the diagnosis as to why it has failed could include locating and quantifying air leaks with the Portascanner®.

These capabilities of the Portascanner® AIRTIGHT 520 are even more important when one situates the device within the increased world-wide emphasis on airtightness in the built environment as a result of the dual pressures of COVID-19 and climate change. In the UK, higher standards on airtightness in the Built Environment are being encouraged by institutions such as the Passivhaus Trust, which forms a part of the global Passivhaus movement, and is the UK affiliate of the International Passive House Association.

Passivhaus builds are approximately ten times more airtight than the standard required of new-build domestic dwellings in the UK, meaning special attention must be paid to identify potential leakage areas in the building fabric and offsite-manufactured components during the final stages of construction. There are about 65,000 buildings worldwide which have achieved Passivhaus standards of comfort, health, and low energy consumption, with many more in the planning process.

Being able to use ultrasound to detect, locate, and quantify air leaks, eliminates the need for pressurisation, negative or positive. Therefore, the Portascanner® AIRTIGHT 520 can test building components when they are manufactured, such as windows and doors, which is where most leaks manifest themselves, with the aim to eliminate leaks before installation. During the execution of a build programme, or in the case of offsite construction, during the assembly of building components, building control aimed at assuring a better build quality should include the frequent and periodic use of the Portascanner® AIRTIGHT 520.

Coltraco Ultrasonics’ technologies provide their users with the unprecedented visibility necessary to make sharp decisions and understand opaque issues. Integrating the Portascanner® AIRTIGHT 520 with essential existing Door Fan and Pulse airtightness testing will improve build quality, and reduce the costs of operating and maintaining the Built Environment, by improving Human Air Hygiene, Fire Suppression, Acoustic Insultation, Thermal Comfort, and decreasing water ingress and absenteeism.

www.coltraco.co.uk

The availability of high quality modular buildings has been a huge advantage for hospitals and health trusts faced with urgent need for additional facilities, and increased pressure on funding.

Rapidly deployed modular buildings can offer a design life of up to 60 years but can be delivered in a fraction of the time taken for conventional build methods, making them an attractive option.
However, there is a concern that the drive to get the best value is often driven simply by the lowest price or fastest turnround, without taking into account vital requirements for patient care, in particular infection control and patient comfort

One area of primary concern is ensuring appropriate ventilation of modular buildings that is compliant with the highest standards and not simply meeting the minimum requirements within guidance documents.
Many buildings are supplied with no mechanical ventilation or air-handling system.  That may be considered adequate ventilation to meet those minimum standards, but adequate and appropriate are not the same thing.
Specific clean-air handling design for the internal configuration of each building should be a requirement to ensure appropriate air flow accommodating patients.
Ventilation is a crucial tool to protect patients and staff from the spread of potentially-harmful pathogens, and ensure their comfort and safety.

Infection prevention and control is vital in healthcare settings at any time, but that has been a primary focus during the recent COVID-19 pandemic.

Research into Coronavirus has indicated that the greatest danger of transmission is via aerosol-based routes and droplets carried in exhaled breath.  Ventilation and airflow is therefore increasingly important.
When specifying a modular building and choosing a supplier, hospitals and health trusts need to carefully evaluate the need for clean-air ventilation and its impact on a specific space configuration.  The underlying concept of factory-built accommodation is rapid production for a mass market at the cheapest price – not specifically designed and engineered modular building solutions for the medical sector.

Professor Cath Noakes from the School of Civil Engineering at the University of Leeds addressed the virtual Healthcare Estates Conference in October 2020 on the issue of ventilation.

Professor Noakes is leading research into ventilation, indoor air quality and infection control in the built environment.
She acknowledged that there is little data from real-world medical settings about COVID-19 transmission, but evidence from community settings shows the highest risk is probably within indoor environments and over short ranges.
In addition to droplets settling on surfaces, and the virus transmitting directly between people during physical contact; there is also evidence of airborne transmission of COVID-19, particularly in poorly-ventilated spaces.

People are at their most contagious when they are largely asymptomatic, so that it becomes increasingly important to consider ventilation of spaces housing patients.

She pointed out that airborne aerosol particles need drag force to keep them up and gravity to bring them down.  But air velocity in a room is known to impact on this and various-sized particles can remain in the air for a significant amount of time, often travelling quite far from their original source.

This is where clean-air ventilation can have a significant impact.

“If a space is well ventilated you can’t completely contain the virus, but the ventilation will dilute the virus and the risks are technically lower,” reasoned Professor Noakes.
This view is reflected in the Federation of European Heating, Ventilation and Air Conditioning Association’s recently-updated REHVA COVID-19 Guidance Document, which cites ventilation as the principal engineering control to help control infection, thus giving further weight to the vital role ventilation plays in the COVID-19 response effort.
It states that in hospitals with an optimal 12 air changes per hour (ACH) ventilation rate, aerosol transmission is mostly eliminated. But, in poorly-ventilated spaces, it may be dominant.
Professor Noakes suggests that in a hospital context it is not the obvious patient wards that will be most affected as these tend to be better ventilated.
Instead, estates and facilities managers and IPC teams need to also consider smaller, more-relaxed environments such as staff restrooms, waiting areas, corridors and treatment rooms.
“Hospitals need to consider where they are ventilating and what impact this has on a particular space,” Professor Noakes said.

However, mechanical ventilation is not provided in the standard specification of modular buildings.   Compliance with HTM 03-01 simply means that the supplier has met the minimum standards required. In addition, as with any natural ventilation method, the air flow and air change rates cannot be guaranteed as they are subject to external factors such as wind speed and direction.

The HTM 03-01 standard dates back to 2007, and therefore does not take into account the latest thinking on the need for clean-air design within the types of modular buildings increasingly used by hospitals for patient accommodation.
When it was produced in 2007 the use of modular buildings was very limited, but now they are seen as vital tool for increasing healthcare facilities.  An updated version of HTM 03-01 due for publication early in 2021 has received specialist input to address the latest thinking on clean-air requirements in patient accommodation.

Ventilation systems are complex solutions and their impact depends on the type of technology and, critically, how it is deployed.

The risks faced by healthcare workers treating patients with viruses that can be transmitted through the air are highlighted by research published in August 2020 by the Institution of Occupational Safety and Health (IOSH).

Researchers from University Hospitals of Leicester NHS Trust in the UK and Turku University of Applied Sciences in Finland examined these risks and how different forms of ventilation can protect staff who are treating patients in hospital isolation rooms, the study, called ‘Reducing aerosol infection risk in hospital patient care’, was commissioned by IOSH because while the risks to frontline healthcare workers when caring for patients with viruses are well known – less known is the optimal design of mechanical ventilation systems. The aim was to see how an engineering control approach of optimising ventilation methods can reduce these risks.

Dr Julian Tang, a consultant virologist at the University Hospitals of Leicester NHS Trust and an honorary associate professor at the University of Leicester, argues that: “The most-effective form of control is the ventilation engineering level of control.

“That means that we have to try and improve the amount of clean-air in the environment compared to the amount of contaminated air.

“The research has shown that there are certain types of ventilation – beyond just different speed and volume of ventilation – that can benefit healthcare workers better without being detrimental to the patient.
“And this report has tried to highlight those particular designs to show that if you are going to build a new hospital with new isolation rooms, these sorts of design are what you might want to follow.”
David Hartley, managing director at medical modular building specialist MTX welcomes the report: “The IOSH report focuses particularly on treating patients in isolation rooms, which are typically provided with a minimum of 10 air changes per hour of mechanical ventilation.  It underlines the importance of mechanical ventilation in reducing airborne aerosol infection.
“At MTX we recognise the importance of engineering air movement and clean-air flow pathways within modular buildings – particularly those housing patients.   Those factors are a vital consideration for our engineers when assessing the performance of the buildings we provide for health trusts and hospitals.  We have the technical expertise and experience to work with clinicians and facilities teams to ensure the building is fit for purpose in every case.
“Optimum airflow is accepted as an important factor in the health, wellbeing and comfort of patients and staff.  It is much more difficult and expensive to retrofit air handling systems to modular units, which is why it is so important to give it full consideration at the design and build stages.”

David Guilfoyle, a director at consulting M&E engineers DSSR which works with MTX adds:  “Ventilation has become much more of an issue with the emergence of COVID-19, and it has reshaped the priorities for ventilation requirements.  We work with MTX to ensure that the air handling provision is effective, bringing maximum benefit and enhancing the safety of patients and staff.”

DSSR designs central air handling for each modular unit produced by MTX according to how it will be used, the patient group and the internal configuration.

Mr Guilfoyle explains: “You have to walk in the shoes of the people who will be working in that building.  If you simply follow the basic HTM guidance you are not walking in their shoes. HTM is a baseline, not a target “Without talking to the clinicians and the infection control team you cannot possibly design an air handling system that is fit for purpose.  You must know the configuration of the beds and know how they are to be used.  Then you can design the system around the clinical requirements, not simply pump air into the room.  The configuration, positions of walls and corridors all influence the effectiveness of the air handling system.

“For example, people talk about 6 or 12 air changes per hour (ACH) ventilation rate in terms of volume, but that rate depends on the configuration.  Previously one of the priorities for air exchange was mitigating the effects of medical gases that could affect staff.  Now it is more about infection control – a priority that has gained momentum over the last year.
“Six ACH may be quite appropriate for one layout, but a different layout occupying the same floor space may require 12.  It is a bespoke solution every time with MTX, and clients get the benefit of flexible M&E design by experts in their field who understand the needs of staff and patients.

“We must also take into account air dilution rates – which reduce the particulate content of the air – a vital tool in reducing airborne infection of a virus like COVID-19.  In addition, clean-air pathways can be custom-designed according to the configuration of each individual modular building.

“If you want to capture the ‘bad air’ and vent it – then it all comes down to the pathways you create through the design of the system.”

Mr Hartley points out that factory-built units are too often simply mass-produced shells; they are not engineered for a specific purpose which may vary from one hospital site to the next.

“It is not one-size fits all.  For example, people who deliver a building in just a few short  weeks may be working hard to fulfil a need – but the building they produce may be a basic shell which could as easily be a schoolroom or an office.  Modular buildings used for patient care should be specifically designed and engineered for healthcare use.”

“Taking into account the threat from COVID-19 it is apparent that more attention needs to be paid to ensuring mechanical ventilation is considered in every case when designing and creating modular buildings.”

DSSR has been involved as a technical expert in updating the HTM 03-01 memorandum to make it more fit for purpose in modern healthcare. The new version is currently being ratified for publication early in 2021.

www.mtxcontracts.co.uk

The pandemic can be credited with pushing the construction industry in the right direction. Many processes have changed and there is no need to go back to the way it was. The technological advances that would have happened over the next few decades, have now been achieved, due to the pandemic’s dramatic acceleration of technology adoption.   

Most buildings are tested for airtightness, air permeability, and air leaks with outdated and intrusive technology, making tests difficult, time consuming and expensive. Yet it is critical to quickly locate and accurately quantify air leaks in rooms and buildings. There is now a solution from Coltraco Ultrasonics who have brought testing for airtightness, and air permeability into the 21st Century. Air leaks with a diameter as small as 0.5mm can now be detected and quickly located with the Portascanner® AIRTIGHT 520.

BUILDINGS, AIRTIGHTNESS & VENTILATION
In March 2020, the world as we knew it fundamentally and suddenly changed, however, innovation continued to evolve and thrive. There was an urgent requirement within the NHS to prevent infection spread in hospitals and contain the virus by maintaining negatively pressurised ICU Wards and ensuring their airtightness. UK Government put out a COVID-19 emergency response grant through InnovateUK for technology to help the NHS. In June 2020 Coltraco Ultrasonics was one of the winners. The grant was for adapting their already award-winning watertight integrity technology into technology suitable for room airtight testing. Like many businesses, Coltraco Ultrasonics was transformed by the pandemic. In just 8 months Coltraco Ultrasonics had successfully designed and manufactured 2 innovative solutions to help the NHS and healthcare settings with infection control and the building sector to ensure effective ventilation through airtightness.
Following from this need to contain the spread of airborne diseases, Coltraco Ultrasonics swiftly saw the demand for this leak detection technology to be re-designed for the built environment. Portascanner® AIRTIGHT 520 is a new solution to ensure that buildings are airtight so that people can be confident that they are returning to “safe buildings” and “safe working” by properly ventilating them. This is to ensure that all ventilation systems are operating effectively, and thereby enhance indoor air quality (IAQ) which has now become a poignant issue.
For the first time, with minimal training, the user can locate a leak, quantify the leak site, calculate the air flow rate through it, and generate an air permeability value for the room. You can then take accurate remedial action where necessary and have full confidence in both the airtightness of your room, and the effectiveness of your ventilation in circulating clean air.

SOLVING THE PROBLEM OF CLEAN AIR
Human Resources and Facilities Management Teams are tasked with keeping buildings and spaces comfortable, sustainable, efficient, safe, healthy and well maintained, and this list keeps growing as buildings, including residential buildings are expected to deliver more. More can include addressing the effects of Climate Change by making a building more energy efficient. More after this pandemic will include a critical appraisal of indoor air quality.
Seventy per cent of the world’s population spends an estimated 90% of its time indoors, and the World Health Organisation estimates that in 2020 there were more than 6 million premature deaths due to air pollution much of it attributed to poor IAQ. Digitalisation has the power to evolve buildings from being fixed passive structures into highly interactive and richly informative systems. Homes are becoming more autonomous, so that the mechanical components inside of the spaces created can ensure that occupants are safer, healthier and more comfortable.

ADDRESSING AIR POLLUTION
Air filtration has never been considered a hot topic, but reflecting on what we know now, perhaps it should have been. Air quality plays an important role in our physical and mental health, and with COVID-19 good air filtration could mean the difference between sick and healthy, and in some cases, life and death.  A fundamental requirement for energy efficient mechanical ventilation and for effective air filtration is achieving a minimum level of air tightness in buildings. Air pollution is an increasing concern, as is maintaining an adequate level of Oxygen within the built environment.
The air we breathe is made up of multiple gases, however for a human to function normally the air must contain enough oxygen. Under normal atmospheric pressure we normally inhale air that contains 20.9% oxygen; if this falls even by one or 2 %, then functionality starts to become more laborious and the environment turns hypoxic, meaning that oxygen levels are low and could be harmful. Humans like fires need to have a constant and assured level of oxygen, and as we consume oxygen, more must be delivered to us.

THE LINK BETWEEN PANDEMICS & BUILDING VENTILATION
The design choices being programmed into buildings right now will be with us for years to come. This is a good thing because of the increased emphasis being placed upon, “Build tight, ventilate right.” COVID-19 will not be the last pandemic disease we will suffer, but our spaces will be better prepared for when the next one strikes. Frequent, regular and periodic testing for air tightness, air permeability, and quickly locating and quantifying air leaks in buildings, so that immediate remedial action may be taken, is now possible. Indoor air quality is a key issue in building design for homes, offices, hospitals, schools and factories. Our living and workplaces, be they at our homes or elsewhere, are where we need to be safe and productive.

This pandemic has shown the true value of good ventilation systems in buildings. There is a newfound respect for a hitherto poorly understood area of building engineering services. As we move on from a Government rescue plan to a Government recovery plan, an essential component of “Build back better,” should include frequent, regular, and periodic, mandatory testing for air tightness in the built environment.

Thanks to Coltraco Ultrasonics and their Portascanner® AIRTIGHT 520 this is now a faster, better and cheaper process.

www.coltraco.com

The global pandemic has forced us all to pay more attention to the air around us, whether in our home, office or outside. Maintaining high standards of indoor air quality (IAQ) is not only important to limit the potential spread of infectious diseases but also to prevent the build-up of indoor air pollutants, such as volatile organic compounds (VOCs), which can significantly impact the health of occupants. One of the simplest and most effective ways to achieve this is by specifying materials which are recognised as low emitters of VOCs under schemes such as the Eurofins Indoor Air Comfort standard.

Understanding VOCs
VOCs can be emitted by a number of materials found in a typical indoor environment, including everything from cleaning products to carpets and paints. The compounds are described as ‘volatile’ as they have a fairly low boiling point. This causes their molecules to become more active at room temperature, allowing them to spread into the surrounding air.
The compounds have been linked with a variety of health issues. Depending on the length and concentration of exposure, these can vary from relatively minor issues – such as dizziness and shortness of breath – to serious impacts including damage to internal organs and the central nervous system.
Whilst an effective ventilation strategy can help to reduce VOC concentrations, it is generally recommended that the first step should be to use materials which are identified as low emitters. The Eurofins Indoor Air Comfort (IAC) programme helps specifiers to quickly and easily identify products which meet these requirements.
Eurofins IAC
The Eurofins IAC has been created to harmonise the criteria within the various VOC emissions standards across Europe. It is split into two levels:
Standard Certification – Identifying that the product complies with minimum mandatory VOC emissions standards within European countries including France, Germany and Italy.
Gold Certification – This recognises the product is also compliant with many of the most demanding voluntary performance standards and can be recognised as being an outstanding material according to the VOC Indoor Air Quality emissions regulations. Eurofins IAC Gold certified products meet the compliance requirements for specifying low-VOC emission solutions within BREEAM, Well Building, LEED and SKA Rating.
In order to achieve Eurofins IAC Gold certification, production facilities are first assessed by an independent inspector who has been approved by Eurofins. The assessor looks at all factors which may affect emissions from the product, such as archival changes in a product’s formulation. During the inspection, samples of products are taken for emissions testing.
Once emissions testing is completed, the results are then sent to the manufacturer along with a detailed report from the inspection, allowing corrective action to be taken where necessary. If the test results suggest compliance and no issues are raised in the inspection report, then the product is issued with certification.

 

Critically, Eurofins requires manufacturers to engage in a process of continuous testing and auditing. Recently certified products are subjected to emission testing and production site inspections every year to ensure low emissions. As a result, installers and specifiers can have confidence that the performance and quality of certified products will be maintained over time.
A growing number of construction products are now certified under the Eurofins IAC Gold programme including Kingspan Kooltherm Pipe Insulation. In addition, work is also under way to consider VOC emissions within the harmonised European Standards for the CE Marking of products.
A healthier future
As we move towards a net zero carbon built environment, our buildings are set to become increasingly airtight. For this reason, the need to control VOC concentrations and to maintain high levels of IAQ is only expected to grow in the coming years. By specifying products which are low emitters, it should be possible to create healthier environments for occupants to live and work.

www.kingspantechnicalinsulation.co.uk

As offsite construction growth outstrips traditional methods, Gilberts has introduced a solution that simplifies incorporation of building services.

The company’s MFS (Mistrale Fusion) provides a stand-alone unit, requiring no ductwork or plant, to ensure a comfortable ambient environment within each space- in air quality AND air temperature.

It means one MFS delivers ventilation, cooling and heating as needed, with no external connections. Once on site, annual design consumption of just 34kw per classroom means that Gilberts’ MFS can cost as little as £5*/classroom/year to operate.

Installed through an external façade or window, Mistrale MFS mixes internal and external air to ventilate the internal space. Each MFS unit features a mixing damper within, modulating airflow to allow the new, fresh air to mix with the warm exhaust air, thus utilising its heat without the need for an exchanger. The integrated low energy fan energises to blend the internal air, ensuring an even distribution of airflow, with control over temperature and CO2 levels within, and maintenance of a comfortable internal environment for occupants. An optional LPHW coil delivers a heat boost, obviating the need to incorporate radiators.

 

Error, group does not exist! Check your syntax! (ID: 2)

 

 

In terms of capacity, just 2 no MFS128 or a single MFS256 will service a 55m2 room (equivalent to a 32 pupil classroom achieving the 8litres/sec/person fresh air required by current Department of Education Building Bulletin (BB101) and PBSP guidelines). Each unit also achieves relevant acoustic considerations: its operational ‘noise’ is less than 30dbA.

Gilberts has further taken care to attain compliance with Building Regulations Approved Document L: MFS attains air leakage better than legislative requirements- 5m3/HR/m2, and a U value of 1W/m2/°C. As with all Gilberts’ ventilation solutions, it delivers efficient weather performance via its bespoke louvre system.

 “Offsite construction is currently predicted to grow at 30%pa, so there is a significant need for stand-alone building services solutions that facilitate efficient production techniques,” observes Gilberts’ Sales Director Ian Rogers. “MFS is already proven in mainstream construction to deliver a value engineered solution, ensuring an appropriate internal environment for an occupied space.”

Family-owned Gilberts has a heritage spanning more than 60 years, with a management team recognised as experts within their respective fields. At its 95,000 sq ft head office facility, it designs, manufactures and supplies a comprehensive range of components designed to deliver efficient air movement strategies in commercial environments. Products are predominantly manufactured in-house, to the extent it even designs and manufactures its own jigs and tools; ventilation products are validated in its purpose-designed on-site, in-house test facility.

 

By Adam Taylor Business Development Manager – Building Envelope – A. Proctor Group

 

In this article Adam Taylor, Business Development Manager – Building Envelope of the A. Proctor Group outlines the need for designers and manufacturers to understand and embrace a best practice approach to heat, air, moisture management in DfMA.

As the construction industry seeks to address the challenges which relate to the UK’s housing shortage and deliver more energy-efficient buildings across the residential and commercial sectors, it is clear that Design for Manufacture and Assembly (DfMA) will form an essential part of the delivery process.

The application of DfMA is ideally suited towards offsite modular construction, with its focus on ease and efficiency of both manufacture and assembly. The benefits of fast-track offsite manufacture for assembly onsite can lead to higher outputs, whilst significantly reducing the project programme time, with less material waste and costs, and fewer delays in relation to snagging and re-working on site.

The A. Proctor Group Ltd as a leading manufacturer of vapour permeable membranes and vapour control layers provides essential best practice advice to designers and manufacturers of offsite modular buildings based upon the proven model of Heat Air Moisture Management (HAMM).

The importance of Heat Air Moisture Management (HAMM) to DfMA

Based upon over 50 years of providing solutions and products for the construction sector we understand that a totally holistic approach is required to DfMA building design. In doing so, the points below consider six core aspects in the process:

  •    Building
  •    Weather
  •    Occupants
  •    Heat
  •    Air
  •    Moisture

For any building to be an energy efficient, healthy, moisture free building envelope there is a clear need to manage the balance of Heat, Air and Moisture movement throughout the process of the building’s life cycle from design, construction, completion and use.

Understanding the importance of these key elements upon the building envelope is crucial to the successful construction and operation of a building. Architects, designers, and off-site construction manufacturers must seek to understand the science behind our buildings, managing the external and internal forces, which impact on the quality of the completed building, its performance in use, as well as the health of its occupants and the wider environment.

Airtightness and modular building design

There is absolutely no question that an integral part of modern building design is influenced by energy efficiency. In the EU it is estimated that buildings account for approximately 40% of energy consumption and are responsible for some 36% of CO2 emissions. Closer to home, around 45% of UK CO2 emissions come from the built environment, (27% from domestic dwellings and 18% from non-domestic).

As thermal insulation requirements have increased over the last few years, the proportion of energy lost through air leakage has become more evident. The ever-increasing thermal insulation required will, however, be rendered largely ineffective unless the airtightness of the structure itself is addressed. Air leakage greatly reduces the effect of thermal insulation; therefore if energy efficiency is to be improved within buildings, this is the most critical area to focus on.

In addition to improved insulation, energy efficient heating systems will also be ineffective if warm air can escape the building and cold air can seep in. This is reflected in the fact that total space heating costs in an airtight construction may be considerably less than in a leaky one.

Air leakage through cracks, gaps, holes and improperly sealed elements such as doors and windows can cause a significant reduction in the performance of even thermally insulated envelopes.

Effective airtightness design

The two main ways to achieve airtightness in the building envelope are internally or externally, or in other terms, “inside of the services zone’ or ‘outside of the services zone’.

Traditional use of internal air barriers can be more complex and costly to install, due to the need to accommodate building services such as electrical, lighting, heating and drainage systems. An internal air barrier is only as good as it’s installation. If all the service penetrations are not adequately sealed, performance will be compromised.

For many years, external air barriers have been commonly specified in North American building design and construction. By moving the air barrier to the external side of the structural frame, external air barrier systems such as Wraptite® from A. Proctor Group allow for an almost penetration-free airtight layer, which can be installed faster and more robustly. This offers an effective but simple system comprising a self-adhesive vapour permeable air barrier membrane, plus vapour permeable sealing tape, Wraptite Corners and Wraptite Liquid Flashing, and provides effective secondary weather protection while preventing trapped moisture and air leakage. Far simpler than internal options an external air barrier system like Wraptite will maintain the envelope’s integrity, with less building services and structural penetrations to be sealed, and less room for error.

Fixing Options for Air & Vapour Control

The traditional forms of VCLs and airtightness membranes will often require mechanical fixing. In the case of timber structures using steel staples, and on concrete using a separate double-sided adhesive tape. The self-adhered nature of Wraptite allows for a simple and fast installation process, minimising the use of additional sealants and tapes, and requiring no specialist contractors to achieve a robust result. This one-step solution provides both a damage resistant air barrier layer and effective secondary weather protection in one installation process, allowing a wind and watertight envelope to be achieved more quickly than using traditional methods.

TopHat incorporates Wraptite into the design

One of the UK’s leading modular housing manufacturers TopHat has successfully incorporated Wraptite into the design of its high-quality timber-framed homes.  Wraptite is a patented external air barrier membrane system, which offers manufacturers and designers of modular and off-site buildings the ability to reliably and comfortably exceed current airtightness requirements. Wraptite is the only self-adhering vapour permeable air barrier certified by the BBA and combines the important properties of vapour permeability and airtightness in one self-adhering membrane.

The A. Proctor Group provides a range of high-performance membranes to address the requirements of heat, air, moisture management within the building element, and provides comprehensive guidance using modelling & analysis tools to ensure compliance and guide designers and manufacturers on best practice related to DfMA.

 

www.proctorgroup.com