Posts

Kingspan unveils new QuadCore Lower Embodied Carbon range – QuadCore LEC

 

QuadCore LEC has been developed specifically to help reduce the carbon footprint of the buildings it is used on. Using comparative Lifecycle Assessment Data (LCA) data to the EN15804-A2 standard, this breakthrough in insulated panel technology demonstrates a 41% reduction* in embodied carbon in modules A1-A3 (product stage) for QuadCore AWP in a 100mm thickness. The first products in the QuadCore LEC range will be in available in Q1 2023 in the UK and Irish markets.

Further reductions in the embodied carbon of the QuadCore LEC range are expected between now and 2030 and are underpinned by the business commitment to Net Zero Carbon manufacturing by 2030, the introduction of an internal carbon charge, and the investment in H2 Green steel – a company pioneering the manufacture of steel using hydrogen instead of fossil fuels.

Mike Stenson, Head of Innovation for Kingspan Group explained “As a business we are committed to developing high performing, energy efficient, building envelope solutions that help minimise the carbon footprint of buildings over the whole life cycle. Creating products with reduced embodied carbon and enhanced potential for circularity is key to achieving this.

QuadCore is already one of the highest performing insulation technologies in terms of thermal efficiency (underpinned by a 25-year thermal warranty) which could enable higher energy and carbon savings through the operational life of the building. This is the first step on our journey to reducing the embodied carbon of our products and we anticipate some major milestones by 2030 to drive that down even further.”

The new QuadCore LEC insulated panel range will have all relevant independent testing and certification for UK & Irish markets.

 

 

*Quadcore AWP LEC LCA shows a 41% reduction in LCA modules A1 – A3 (product stage) when compared to existing Quadcore AWP LCA to the EN15804-A2 standard for a 100mm thickness. The LCAs for QuadCore KS1000RW and QuadCore Coldstore are currently going through the verification process and EPDs (Environmental Product Declarations) will be published ahead of the products launching in Q1 2023. The 41% reduction is achieved through raw material changes. When comparing modules A-C (product stage, construction process stage, use stage, end of life stage) the overall reduction is 17%.

 


FOR MORE INFORMATION ON QUAODCORE TECHNOLOGY PLEASE CLICK HERE TO EMAIL KINGSPAN

 

UK: +44 (0) 1352 716100   IRE: +353 (0) 42 9698 500

 

CLICK HERE TO VISIT THE KINGSPAN WEBSITE

 


 

In the drive towards reduced net zero, Gilberts Blackpool claims its new MFS-HR surpasses performance of anything comparable on the market for commercial and public sector applications.

Building on Gilberts’ pioneering MFS hybrid ventilation unit- the first of its kind to be developed in the UK- the combined hybrid unit can achieve up to 75% heat recovery.

The exceptional and market-leading heat recovery performance means that when employed as part of a sustainable strategy including photovoltaic arrays, MFS-HR could achieve energy negative status.

As with the original MFS and other alternative hybrid ventilation systems, MFS-HR is a stand-alone unit installed through the façade to ventilate, cool and warm the interior. Initial tests indicate each MFS-HR will provide up to 4kw heating and 2kw cooling capacity whilst still delivering a airflow rate of up to 470l/s. It could cost as little as £10/annum/zone to operate.

Manufactured by Gilberts in the UK, the whole MFS range makes optimal use of recyclable materials making it low on embodied carbon, MFS attains air leakage better than legislative requirements – 3m3/HR/m2, and a U value of less than 1W/m2/°C, all combining to further enhance the green credentials.

 

 

“When we launched the original MFS, there was nothing else like it in terms of performance,” says Gilberts Sales Director Ian Rogers. “MFS-HR will build on that, taking hybrid ventilation with heat recovery to new heights in the drive towards energy and carbon reduction and re-affirming Gilberts’ position as a technological leader.”

 


CLICK HERE FOR FURTHER DETAILS

 


 

World-first solar technology is a game-changer in providing affordable clean energy to flats

  • SolShare is the world’s only technology for connecting multiple residential units within a single building to a single rooftop solar PV system
  • Wales is the first nation to implement new solar technology for housing blocks in Europe
  • Each household could benefit from savings of around 50% off their electricity bills
  • Social landlords leading the way in transition to cleaner, more affordable electricity

 

 

Allume Energy, Wales & West Housing and the Welsh Government have today announced the first installation of Allume’s SolShare technology for the UK’s housing sector, to provide clean, affordable electricity to residential flats in Cardiff.

The project has connected 24 flats to lower cost solar energy at Odet Court, with the potential to meet 55%-75% of each flat’s electricity demand. Based on the average usage of 1800kWH – 2,400 kWh for a 1-bed flat this could equate to an electricity bill saving of around 50% (between £390 to £530) a year, based on current average electricity costs in the UK of 34p/kWh. The project has been funded by the Welsh Government in association with Wales & West Housing as part of the Optimised Retrofit Programme.

SolShare is the world’s only technology for connecting multiple residential units within a single building to a single rooftop solar PV system. Until now, previous options involved installing individual solar systems into each unit – a largely unworkable solution for developers due to cost, footprint and inefficient energy utilisation. In the case of Odet Court, this would have meant installing 24 sets of panels, 24 inverters and 24 batteries.

Not only has SolShare significantly reduced the amount of hardware and footprint required, it has also reduced installation costs as compared to a typical solar system. Its ‘dynamic sharing’ capacity also delivers an improved solar utilisation of over 25%. Importantly, SolShare is suitable for retrofit projects as well as new builds, as it does not require any changes to the existing supply and metering infrastructure.


“Wales is leading the way with the installation of this new technology,” commented Jack Taylor, General Manager Europe, Allume Energy. “We hope it will serve as a template for governments and social housing providers in the UK to provide cost-effective energy efficiency upgrades to multi-unit residences. Simple and affordable solutions are available, so it’s great to see governments and housing associations embracing innovative technologies which help tackle fuel poverty and climate change.”

Climate Change Minister Julie James said: “This is an exciting first of its kind project for Wales and exactly the type of thinking we need to see within the housing sector. The decarbonisation of homes plays a big part in our journey towards a Net Zero Wales by 2050 and I look forward to following this innovative project as works progress. At a time when costs are rising, improving the energy efficiency of homes will not only help us to deal with the climate emergency but also help families through the cost of living crisis. It’s another important step in our journey towards a stronger, greener, fairer Wales.”

Joanna Davoile, Executive Director (Assets) at Wales & West Housing said: “At a time when many people are facing difficult choices of whether to heat their homes or feed themselves and their families, it is only right that we explore ways to make our homes more energy efficient for our residents where possible. In recent years we have been trialling different methods of retrofitting older homes with energy-saving technologies but one of the main challenges has been how to fit PV panels and battery systems to our apartment homes so that everyone living in the schemes could equally benefit. The SolShare system seems to be a much fairer solution as the energy generated by the building can be shared equally to help our residents to keep their electricity costs down rather than going back to the grid. We are excited to see how the technology used in the SolShare system will work for our residents.”

Illustrative image of nuclear fusion concept

South Oxfordshire District Council Planning Committee approves fusion energy project; construction to start this year at UKAEA’s Culham Campus.

The fusion demonstration will be built to 70 per cent scale of a commercial power plant at UKAEA’s Culham Campus. The fusion machine is expected to be commissioned in 2026 and fully operational by early 2027.

Following the resolution to grant planning permission by the South Oxfordshire District Council Planning Committee, construction of General Fusion’s demonstration at the United Kingdom Atomic Energy Authority’s (UKAEA) Culham Campus is expected to start this summer.

When construction of the 10,500m2 building is complete, General Fusion will lease the building from UKAEA. The company’s fusion machine is expected to be commissioned in 2026 and fully operational by early 2027.

Built to 70 per cent scale of a commercial power plant, the demonstration will create fusion conditions in a power plant-relevant environment, achieving temperatures of over 100 million degrees Celsius. This is a crucial step on the path to eventually powering homes, businesses and industry with zero-carbon fusion energy. The facility itself will not generate power.

Siting the facility at the UKAEA’s Culham Campus, part of the thriving UK Fusion Cluster, enables General Fusion to access world-leading science and engineering capabilities, such as knowledge and experience in designing, constructing and operating the record-breaking Joint European Torus. In addition, the company will benefit from the UK’s existing fusion energy supply chains.

“The UK has been a longstanding leader in fusion energy development. We are thrilled to join the Culham Campus and the UK’s Fusion Cluster, and anticipate creating 60 long-term jobs at the site,” said Greg Twinney, CEO of General Fusion. “In addition, we expect the project will generate approximately 200 jobs during construction.”

“The UKAEA welcomes this milestone as it aligns with our strategy to create clusters that accelerate innovation in fusion and related technologies, and support public-private partnerships to thrive,” said Professor Sir Ian Chapman, CEO of UKAEA. “It also builds upon our heritage of hosting major fusion facilities here at our Culham Campus.”

The building was designed by architects, AL_A, led by Stirling Prize winner Amanda Levete and Ove Arup Engineers, and has been developed to exemplary design and sustainability standards.

“Receiving planning permission is a huge milestone and testament to the close collaboration between our team, General Fusion, and the UKAEA. The building will not only be highly efficient but one that also expresses the technological optimism of fusion to solve the energy problems of the world,” said Amanda Levete, founder and principal of AL_A. “The design projects a confident message to the public about the extraordinary potential of this technology. It represents a clear shift in the relationship between environment and industry, moving from one of opposition to one of symbiosis.”

The design of the fusion demonstration facility is intended to enhance the surrounding biodiversity. The building will achieve BREEAM excellent accreditation through a mix of strategies that include reusing waste heat, natural ventilation to minimize cooling loads, as well as a large green roof and extensive photovoltaics.

 

Source: Built Environment Network