£13m project at Imjin Barracks is the first on British Army’s SLA Programme  

 

Vertically integrated off-site construction specialist Reds10 has completed work on the first project to be delivered as part of the British Army’s Single Living Accommodation (SLA) Programme at Imjin Barracks for the Defence Infrastructure Organisation (DIO). The SLA is the first site to benefit from a new wave of net zero carbon construction, and has become one of the most advanced buildings in Europe for Smart Building Control.

Located in Innsworth, Gloucestershire, the three-storey building provides modern, high quality and sustainable accommodation for Army personnel based at the HQ of the Allied Rapid Reaction Corps (ARRC), comprising 69 single en-suite bedrooms, alongside best-in-class communal facilities.

The SLA is a true example of an innovative, digitally-enabled, intelligent building. It generates and analyses over 21,000 data points (including humidity, door and window contacts, sound levels, temperature, daylight, power metering, water and more), whereas a typical Building Management System (BMS) only has around 220 data points feeding into it. Large volumes of real time data are processed and accessed via a platform powered by Reds10’s SMART building technology, ThriveTM, optimising operational performance and maintenance. Advanced monitoring and control drive significant energy and cost savings, provide actionable insights, and enhance user engagement, comfort and experience.

The £13 million project has sustainability at its core, in alignment with the DIO’s 2020-2030 strategy. It has achieved a Defence Related Environmental Assessment Methodology (DREAM) ‘Excellent’ rating, scored more than 95% on the Smart Readiness Indicator (SRI) and complies with a BACS Class A building (BS EN ISO 52120). Compared with Class C, its integrated approach generates savings of:

 

  • 39% in heating
  • 24% in electricity (lighting)
  • 22% in electricity (auxiliary energy)
  • 20% in domestic water storage/circulation

Each bedroom is equipped with a programmable touchscreen that allows the occupant to customise their heating preferences, increase ventilation and identify any issues. Moreover, the touchscreen provides tenants with information on their monthly electricity and heating consumption, which is ranked on a building-wide leaderboard. The use of gamification helps to incentivise and motivate occupants to make conscious sustainable changes in their everyday lives.

 

With sustainability measures including the installation of photovoltaic panels and air source heat pumps, there is also an adjacent Nano Crystal Cell Battery holding up to 1327 kWh of energy. The battery ensures resilience and continuity in the event of grid failure and is anticipated to enable the building to go entirely off grid during summer months.

 

Mike Green, Chief Executive, Defence Infrastructure Organisation, said: “The new accommodation being delivered by DIO and its partners at Imjin Barracks reflects DIO’s continuing commitment to providing the best possible accommodation for the Armed Forces.”

Major General Richard Clements CBE, Director of Army Basing and Infrastructure said: “It is excellent to see the result of significant investment in new modern accommodation for Imjin Barracks, as part of the enduring commitment across Defence to enhance living conditions for our people.

“I am delighted that this building is now ready for occupation. The facilities and interior have been completed to an impressive standard and the design will contribute to local efforts to reduce the Army’s carbon footprint.”

 

Phil Cook, Defence Sector Lead & Director at Reds10, said: 

“It has been a pleasure to work on this first SLA alongside the DIO, the British Army, Arcadis and the rest of the project team, improving the lived experience for Armed Forces personnel. Thanks to true collaboration and agility throughout the project team, we have been able to deliver a SMART, sustainable space which reflects the way its occupants live and work in today’s modern society.”

The project was delivered for the Army by the DIO, contracting to off-site construction specialist Reds10, Technical Service Providers Arcadis and HLM Architects. Reds10 employed 3D volumetric construction with units arriving on site up to 90% complete, allowing for significantly faster programme delivery, increased security thanks to fewer people needed on site, minimal disruption to a live military site and stronger quality assurance.

The Army’s £1.4 billion SLA Programme is delivering 8,500 SLA bed spaces over ten years to improve living conditions for serving personnel. Additionally, 8,000 SLA bed spaces are being provided by the Defence Estate Optimisation (DEO) Army Programme.

 

While more and more consumers enjoy the convenience of having a robot vacuum their home or take care of the lawn, it is in industrial applications that robotics have made the biggest impact. State-of-the-art manufacturing processes are unthinkable without industrial robots handling part of the workload, whether it’s handling, welding, or assembling, which are the three most common applications of newly installed industrial robots in 2022.

Data from the International Robotics Federation (IFR) shows, the operational stock of industrial robots has tripled over the past decade, with almost four million robots in use across various industries by the end of 2022. According to the IFR, Asia leads the way in the shift to automated processes, with China in particular installing industrial robots at breakneck speed. In 2022, the country accounted for more than 50 percent of newly installed industrial robots worldwide, quickly catching up with industry leaders South Korea and Japan, who had the highest density of robots installed per 10,000 workers in the manufacturing industry in 2021.

According to the IFR, Asia leads the way in the shift to automated processes, with China in particular installing industrial robots at breakneck speed.

In 2022, the country accounted for more than 50 percent of newly installed industrial robots worldwide, quickly catching up with industry leaders South Korea and Japan, who had the highest density of robots installed per 10,000 workers in the manufacturing industry in 2021.

According to the World Robotics report, a record number of 553,000 industrial robots were newly installed last year, as the global operational stock climbed to 3.9 million by the end of 2022.

China alone accounted for more than half of new installations in 2022, making it by far the largest market in the world.

With just over 50,000 new installations, Japan came second last year, followed closely by the United States and South Korea.

Japan is also the largest manufacturer of industrial robots, according to IRF, accounting for 46 percent of global production in 2022.

While China is the largest market in absolute terms and in terms of growth, South Korea and Japan are ahead of the world’s manufacturing superpower in terms of robot density, i.e. installed robots per 10,000 manufacturing workers.

According to the IFR, South Korea had 1,000 installed robots per 10,000 employees in the manufacturing industry, compared to 399 for Japan and 322 for China.

 

 

UK Housing Secretary Gove will re-review London Sphere planning permission after Mayor’s refusal

Two weeks after London Mayor Sadiq Khan announced his refusal of planning permissions for the controversial MSG Sphere development planned in East London, the UK’s housing chief has issued a rebuke that may leave some glimmer of hope for the project’s eventual realization.

Several UK-based outlets are now reporting that Housing Secretary Michael Gove has asked the London Legacy Development Corporation to have the plans reviewed personally by his office before a final decision can be made. The countermand means another six week’s wait for the project, which has caused a torrent of backlash from critics and local residents since first being introduced in January of 2018.

James Dolan, Executive Chairman of the Madison Square Garden Entertainment Corp., however, told the Evening Standard that Khan’s decision was the “end of the line” for his company’s pursuit of the project in Queen Elizabeth Olympic Park.

The Architects’ Journal reported the company’s plans to sell the land parcel it had purchased in advance of the development. Other cities outside the UK are now being considered for a restart, according to statements provided by Sphere Entertainment, the entity in charge of the Sphere and its now-open Las Vegas counterpart.

Khan had cited a WSP report on the project that questioned some of the environmental impact assessments in his decision, adding that the issue of light pollution was another decisive factor. No further plans for the 4.7-acre plot have been presented. Populous was in charge of the design, which would have cost around £800 million ($979 million USD) to construct.

 

Source: Archinect

Twenty two countries have signed up to the goal of tripling global nuclear energy capacity by 2050, at the UN’s COP28 climate change conference.

The heads of state, or senior officials, from Bulgaria, Canada, the Czech Republic, Finland, France, Ghana,  Hungary, Japan, South Korea, Moldova, Mongolia, Morocco, the Netherlands, Poland, Romania, Slovakia, Slovenia, Sweden, Ukraine, the United Arab Emirates, the UK and the USA signed the declaration at the conference taking place in Dubai.

Speaking during the launch ceremony at the event, the US Presidential climate envoy John Kerry was reported by Reuters to have said that the signatories believed that the world could not get to Net Zero without building more nuclear energy capacity: “We are not making the argument that this is absolutely going to be the sweeping alternative to every other energy source. But … you can’t get to net-zero 2050 without some nuclear.”

The declaration says the countries recognise the need for a tripling of nuclear energy capacity to achieve “global net-zero greenhouse gas/carbon neutrality by or around mid-century and in keeping a 1.5 degrees celsius limit on temperature rise within reach”. It also recognises that “new nuclear technologies could occupy a small land footprint and can be sited where needed, partner well with renewable energy sources and have additional flexibilities that support decarbonisation beyond the power sector, including hard-to-abate industrial sectors”.

And there is recognition of the role of the International Atomic Energy Agency to support its member states to include nuclear in their national energy planning, as well as agreement on the importance of financing for new nuclear and it recognises “the need for high-level political engagement to spur further action on nuclear power”.

Those signing the declaration commit to:

  • Work together to advance a global aspirational goal of tripling nuclear energy capacity from 2020 by 2050, recognising the different domestic circumstances of each participant
  • Take domestic actions to ensure nuclear power plants are operated responsibly and in line with the highest standards of safety, sustainability, security, and non-proliferation, and that fuel waste is responsibly managed for the long term
  • Mobilise investments in nuclear power, including through innovative financing mechanisms and invite the World Bank and other international financial institutions’ shareholders to encourage the inclusion of nuclear energy in their organisations’ energy lending policies
  • To supporting the development and construction of nuclear reactors, such as small modular and other advanced reactors for power generation as well as wider industrial applications for decarbonisation, such as for hydrogen or synthetic fuels production
  • To supporting responsible nations looking to explore new civil nuclear deployment under the highest standards of safety, sustainability, security, and non-proliferation

They also recognise the importance of promoting resilient supply chains and, where feasible, of extending the lifetimes of existing nuclear power plants. The signatories also “resolve to review progress towards these commitments on an annual basis on the margins of the COP” and “call on other countries to join this declaration”.

The declaration comes with nuclear energy becoming increasingly recognised by countries as being a key part of efforts to cut carbon emissions and tackle climate change. The Net Zero Nuclear initiative, which was co-founded by Emirates Nuclear Energy Corporation and World Nuclear Association, with support from the International Atomic Energy Agency’s Atoms4NetZero initiative, calls for “unprecedented collaboration between government and industry leaders to at least triple global nuclear capacity to achieve carbon neutrality by 2050”.

World Nuclear Association Director General Sama Bilbao y León said: The significance of the Ministerial Declaration cannot be overstated. The countries supporting this declaration are making a resolute commitment, placing nuclear energy at the heart of their strategies for climate change mitigation. Their vision is one that strives for a sustainable, cost-effective, secure, and equitable energy mix all over the world.

“On behalf of the global nuclear industry, I express my deepest appreciation for your collective effort in crafting this bold and pragmatic declaration. Your commitment to nuclear energy is not just a statement; we take it as a challenge extended to the entire nuclear industry worldwide.

“As we move forward, we will unite and work together in an ambitious spirit to translate today’s goals into tangible achievements. We will continue to maximise our efforts to extend the operations of the existing nuclear fleet and work together to accelerate the deployment of new nuclear projects. We will continue to set the highest standards of quality, safety and security and will continue to work together to attract and cultivate the brightest minds among young scientists, engineers and other professionals to come and join us.”

The signing of the ministerial declaration comes the day after the IAEA issued what it called a landmark statement saying the world needs nuclear energy to fight climate change and build “a low carbon bridge” to the future.

“The IAEA and its member states that are nuclear energy producers and those working with the IAEA to promote the benefits of peaceful uses of nuclear energy acknowledge that all available low emission technologies should be recognised and actively supported,” the statement read by IAEA Director General Rafael Mariano Grossi said.

“Net zero needs nuclear power. Nuclear power emits no greenhouse gases when it is produced and contributes to energy security and the stability of the power grid, while facilitating the broader uptake of solar and wind power,” it added.

COP28 – which stands for the 28th Conference of the Parties to the original 1992 United Nations Framework Convention on Climate Change – is being held in Dubai in the United Arab Emirates from 30 November until 12 December. Representatives of nearly 200 governments are attending and the aim is to continue efforts to limit the global rise in temperatures to 1.5 degrees celsius above pre-industrial levels.

Source: WNN

Kensa Utilities, a Ground Source Heat Pump infrastructure asset company, is delighted to announce that they have achieved a remarkable feat by securing two prominent awards for their groundbreaking Heat the Streets project, which was part funded by the ERDF, in a week.

At the H&V News Awards, Kensa Utilities proudly accepted the coveted Heat Pump Project of the Year accolade alongside Coastline Housing. The Heat the Streets project, a testament to Kensa’s vision, offers a blueprint for decarbonising millions of homes across the UK, including flats and terraces. It recognises how the large-scale street-by-street rollout of Ground Source Heat Pumps can be achieved through its innovative Networked Heat Pump solution, the 21st-century equivalent to the gas network.

Judges said:

“Kensa have developed a technical and commercial model that makes budgeting a cheap and simple solution for occupiers and owners alike that can solve many of the conundrums in our cities, towns, and villages. The innovative, can-do, problem-solving approach impressed all the judges, making them a clear winner. The lessons learnt from this project will act as a benchmark for future schemes across UK.”

In another momentous win, Kensa Utilities secured the Best Home Energy Project title at the prestigious Fully Charged Awards in Amsterdam. Securing these accolades highlights the success of implementing a widespread deployment of Ground Source Heat Pumps through the groundbreaking Networked Heat Pump solution.

Wouter Thijssen, Managing Director of Kensa Utilities, comments: 

“These awards are a testament to the hard work, dedication, and passion of the entire Kensa Utilities team. We are honoured to be recognised by industry leaders and peers for our commitment to sustainable heating solutions.”

By embracing renewable energy sources and implementing cutting-edge solutions, Kensa Utilities has set a new standard for environmentally conscious and economically viable heating projects. The ‘Heat the Streets’ initiative effectively decarbonised residential heating in new and existing homes throughout Cornwall. This was accomplished by linking Kensa’s highly efficient ground source heat pumps to Shared Ground Borehole Arrays, a pioneering approach involving drilling into the roads—a first in the UK.

As the demand for sustainable energy solutions rises, Kensa remains at the forefront of innovation, consistently delivering projects that meet and exceed industry standards.


To hear more about this ground-breaking project

CLICK HERE

and sign up for a free webinar from Kensa

Earlier this year, the Heat the Streets project won the

Lighthouse Heat Pump Award at the European Heat Pump Association’s 2023 Heat Pump Awards,

as well as Green Heat Project of the Year at the BusinessGreen Awards


 

A UK startup is about to commercialise what it claims is the world’s first autonomous robot able to locate and fix potholes.

Robotiz3d has combined artificial intelligence (AI) with advanced robotics to automate road maintenance based on patented research developed at the University of Liverpool.

The autonomous vehicle uses advanced detection and repair technologies incorporated into the AI robotics system to assess and predict the severity of cracks and seal them before they worsen.

It can analyse the geometry of potholes and collect measurement data as it operates. It is expected that once in the market, it will help local authorities to predict road conditions accurately.

The latest Asphalt Industry Alliance Annual Local Authority Road Maintenance report found that the backlog of road repairs and budget shortfall is the highest on record.

In the last financial year, local authorities spent £93.7m on reactive maintenance, such as patching and filling potholes.

Robotiz3d said official testing is underway and is making substantial progress towards commercialising its technology.

Source: Construction Management

Balfour Beatty, the international infrastructure group, has signed a Memorandum of Understanding with Hoban Group – a leading construction company based in South Korea aiming to create a differentiated offering through advanced designs, specialised products and customer-centered services.

The Memorandum of Understanding will see Balfour Beatty work directly with Taihan Cable and Solution Co. Ltd, a specialist cabling subsidiary of Hoban Group, on potential large-scale onshore Power Transmission and Distribution projects across the UK.

As the largest Power Transmission contractor in the UK with over a century of experience and employing c.3,000 people in the Power Transmission and Distribution sector alone, Balfour Beatty will combine its expert capability in providing secure energy with Taihan Cable and Solution Co. Ltd.’s 70 years’ experience in developing innovative cabling products.

The partnership will operate with a focus on delivering sustainable, low-carbon solutions, prioritizing Modern Methods of Construction and Building Information Modelling to drive efficiencies and productivity throughout future projects.

Chris Johnson, Chief Technology Officer at Balfour Beatty, who attended the signing event alongside Mr Kim Sun Kyu, Chairman of Hoban Group, said:

“At Balfour Beatty, our unique end-to-end capabilities means we are perfectly positioned to capitalise on the emerging UK energy market opportunities and deliver the critical national infrastructure required for the UK to achieve Net Zero by 2050.

“This latest partnership with Hoban Group is built on true collaboration and will further strengthen our ability to deliver high quality sustainable solutions for large-scale onshore Power Transmission and Distribution projects.”

 

Mr. Kim Sun Kyu, Chairman of Hoban Group, said

“The partnership will strengthen the strategic relationship two parties have been developing and we will deliver collaborative business models such as exchange of technical knowledge and resources.  This collaboration will assist UK Government’s Net Zero target.”

The partnership bolsters Balfour Beatty’s commitment to addressing the growing demand for clean, secure energy across the UK –  building on the company’s Memorandum of Understanding with Aker Solutions and Holtec Britain, which it signed last year.

 

Source: Balfour Beatty

Exploring modern methods of construction and mitigating disputes

Construction has undergone a remarkable transformation in recent years with the adoption of Modern Methods of Construction (MMC). These innovative approaches have revolutionised the construction process and introduced strategies to mitigate construction disputes. From modular construction to 3D printing, MMC techniques offer numerous benefits such as increased efficiency, sustainability, and affordability, while addressing common sources of conflicts. In this article, we delve into the exciting world of modern construction methods and explore how they can help minimise construction disputes while highlighting potential challenges.

Design and planning

Inadequate design and planning are common primary causes of construction disputes. Traditional methods often lead to misunderstandings, miscommunication, and errors during construction. However, modern methods such as Building Information Modelling (BIM) have significantly improved design and planning practices. BIM enables stakeholders to create a comprehensive virtual representation of the project, facilitating effective collaboration and reducing designrelated disputes. By identifying clashes and optimising design solutions before construction begins, BIM can minimise conflicts between parties and enhance project coordination.

While BIM has transformed information creation and dissemination, it does have drawbacks. Its effective implementation is expensive and complex, discouraging so far, its widespread adoption, especially on smaller projects and in less affluent regions. Differing levels of BIM adoption within a project team can also be an issue, as it relies on common standards and specific software and file formats. Compatibility issues and data loss may occur without adherence to these standards. Furthermore, BIM heavily relies on accurate and complete input data to generate reliable models. Flawed or incomplete data can lead to inaccuracies and rework during construction.

Local statutory requirements should also be considered when using MMC methods like modular construction. In the UK, the “Manual to the Building Regulations” published by HM Government, points out that existing approved technical guidance documents may not be applicable to MMC. Designers may need to go further to ensure compliance with Building Regulations for such structures, rather than relying solely on established guidance. Demonstrating the overall robustness of a structure can become more challenging and burdensome for designers compared to traditional methods, potentially leading to conflicting conclusions on compliance with regulations.

Enhanced quality control

Construction disputes often arise due to issues related to quality control and workmanship. Modern methods of construction, such as modular construction and prefabrication, offer controlled factory environments for manufacturing building components. These controlled conditions ensure higher quality control, leading to fewer defects and errors. By minimising the risk of poor workmanship, MMC techniques reduce the likelihood of disputes related to construction defects, delays, or noncompliance with specifications.

However, prefabrication introduces new challenges. Damage during transportation and handling is a common problem, especially with partially finished modular units containing delicate components. Offsite construction requires precise measurements and alignment of components. Any deviation from the required dimensions can result in assembly difficulties, poor fit, and compromised structural integrity. Maintaining tight manufacturing tolerances and constructing in situ elements with equal accuracy are important considerations.

Streamlined project timelines

Delays in project completion are a common source of disputes in the construction industry. Modern methods of construction, such as modular construction and prefabrication, offer significant advantages in terms of project timelines. Off-site manufacturing allows for simultaneous construction activities, reducing construction time and minimising the impact of adverse weather conditions. By accelerating project schedules, MMC techniques mitigate the risk of delays and associated disputes, promoting smoother project execution and client satisfaction. This can increase the criticality of early stage works – if, for example, off-site manufacture of modular units requires certain substructures to be in place prior to their arrival, any delays in their completion could lead to unforeseen storage and transportation costs which might not arise with traditional methods.

A further consideration is the impact that late changes may have upon production processes. Alteration of manufacturing lines can have significant implications on cost and programme, which may have been possible to resolve promptly with in situ construction. Ensuring the design is finalised well before production commences is critical.

Clearer contractual arrangements

Construction disputes often stem from ambiguous or poorly drafted contracts. However, modern construction methods have encouraged a shift towards more detailed and standardised contractual arrangements.

With MMC techniques, contracts can include specific provisions related to modular construction, 3D printing, or prefabrication, addressing potential challenges and clarifying responsibilities. Both NEC4 and FIDIC contract suites have introduced and addressed BIM protocols, as the adoption of BIM increases worldwide. Clearer contractual arrangements minimise disputes by establishing a mutual understanding of project expectations, deliverables, and risk allocation.

However, these new techniques come with new challenges that must be resolved. Methods like modular construction often require substantial costs for the contractor at an early stage of the project, which needs careful consideration. Dealing with changes can be challenging due to the lack of flexibility often associated with MMC, and managing the supply chain becomes crucial when timely delivery of components and materials is critical. Untangling liability for defects can also be complex, given the intricate contractual frameworks underlying these elements.

MMC techniques require close coordination between designers, manufacturers, and construction teams, encouraging proactive problem-solving and reducing the likelihood of disputes arising from miscommunication or lack of coordination.

Collaboration and communication

Effective collaboration and communication are vital in preventing and resolving construction disputes. MMC promotes enhanced collaboration through the use of digital technologies and platforms. BIM, for instance, fosters communication among different project teams, facilitating early identification and resolution of conflicts. Furthermore, MMC techniques require close coordination between designers, manufacturers, and construction teams, encouraging proactive problem solving and reducing the likelihood of disputes arising from miscommunication or lack of coordination.

Conclusion

Modern methods of construction have ushered in a new era for the construction industry, not only in terms of efficiency, sustainability, and affordable construction techniques, but also providing opportunities to mitigate construction disputes. If integrated and properly coordinated, through improved design and planning, enhanced quality control, streamlined project timelines, clearer contractual arrangements, productive collaboration, and effective alternative dispute resolution mechanisms, MMC techniques have the potential to significantly reduce the risk of conflicts arising during construction projects.

As the industry continues to embrace these innovative methods, efficiencies in construction techniques will continue to be realised – provided all stakeholders are willing to work collaboratively and embrace change.

 

Source: Lexology

The next generation of new build homes has been introduced by Castle Green Homes.

Combining time-honoured style and materials with modern methods and digital technology, the homebuilder has revolutionised the way its homes are built and sold.

Headquartered in St Asaph, Castle Green is currently building and selling new homes at Bridgewater View at Daresbury Garden Village, Cheshire; Brook Meadow, Penyffordd, Flintshire; Orchard Place, Thornton, Sefton; and Mayes yr Haul, St Asaph, Denbighshire.

Across all its developments, the homes combine the best of old and new, both in their design and construction. Externally they’re inspired by the architecture of the Arts & Craft era, while inside they’re designed for modern living.

The homes are built using sustainably sourced, precision-made timber frames. Around a quarter of UK homes are currently built with timber frames, but they date back to medieval and Tudor times.

“Modern timber frames offer a fast, reliable method of building, with lower CO2 created than conventional building methods,” Stuart Andrew, design & planning director at Castle Green Homes, said. “Effectively, the timber frame system replaces the block work in the construction of our homes. The properties still look the same, with the advantage that build times are reduced, so our customer can move sooner. Plus, because timber framed homes are engineered to have lower air permeability and are generously insulated, this reduces the amount of energy needed to heat the home, making them potentially cheaper to run.”

Castle Green’s homes achieve an Energy Performance Certificate rating of A or B, making them among the most energy efficient available. Kitchens are fitted with energy efficient appliances. Eco labelled white goods such as dishwashers/ washing machines are provided or encouraged, all to A level rating.

The energy efficiency of a new Castle Green home increases the finance options available to our purchasers.

Sales and marketing director Caryl Russell said: “Research from the Home Builders’ Federation suggests those who live in a new house could save £2,200 a year on their energy bills*. The HBF found that new homes are 55% cheaper to run than older properties and predicts that when the Future Homes Standard come into effect energy bills for the average new build property will be 70% cheaper than their older counterparts. But it’s not just lower energy bills that our homeowners can enjoy.”

Caryl added:

“Homes with an EPC rating of B and above qualify to be purchased using green mortgages. Lenders tend to offer a lower rate with a green mortgage compared with a standard mortgage. This means that our homeowners can potentially enjoy long term savings on their monthly mortgage repayments. We can put buyers in contact with mortgage specialists who will help them understand the options available to them.”

Buyers at Maes yr Haul could find they have even more options available as selected homes there qualify for Help to Buy – Wales.

Designed to make homeownership easier to afford, Help to Buy – Wales is exclusive to new homes priced up to £300,000**. The Welsh Government scheme is only available with homes with an EPC B rating and above.

To purchase a home using Help to Buy – Wales, customers should only need a 5% deposit and 75% mortgage. The remaining 20% is covered by an equity loan, which is interest free for five years.

Further  research by the HBF suggests it costs more than £70,000 to bring a three-bedroom semi-detached home up to the same standard of a new build equivalent.

“The financial cost doesn’t take into account the time or the emotional investment renovating an older property requires including sourcing trades and finding suppliers,” Caryl said.

“Buy a new Castle Green home and you can select from a wide range of standard and upgrade options to customise it to your personal taste, then sit back while we take care of the hard work.”

Castle Green has revolutionised the home-buying journey with Willow, a digital new homes assistant. The innovative system has earned awards including the digital transformation category of the Marketing Week Awards and the best use of marketing technology category of the Construction Marketing Awards.

“Willow is industry-leading, providing our homeowners with a digital new homes assistant to support them throughout their homebuying journey and beyond,” Caryl added.

“Developments and homes can be favourited and compared to help you make the right decision for you and your family.  All documents relating to the purchase of your home will be completed and stored online, meaning you won’t have to worry about keeping them safe.”

Willow can be used to customise your Castle Green home by selecting choices wherever and whenever you want, including making payment for extras. There’s the ability to live “chat” with customer care and sales teams and to watch the 10-step progress of your home being built.

Caryl said:

“We have an extensive range of options available to our homeowners, subject to build stage and Willow gives them the ability to see and compare the various choices. We don’t simply offer computer generated images of what a house type looks like, we provide customers with a digital twin of their new home so they can see exactly what their specification choices will look like in their new home.”

Source: Business Wales

How Australia’s prefab industry can help the housing crisis

Prefabrication is a practical solution to meet Victoria’s urgent housing needs by providing speedy and cost-efficient dwellings

The Victorian government’s recent announcement that it’s aiming to build 800,000 new houses in a decade might seem very ambitious, but it aims to address a very serious problem.

Housing supply in Australia has not kept up with demand. There’s a national shortfall of housing, increasing interest rates which are creating significant levels of mortgage stress, spiralling rental prices and the large number of people now priced out of the housing market.

All of these factors are contributing to what’s now being described as a national housing crisis.

But could prefabricated modular construction – which basically involves producing standardised components or the whole of a structure in an off-site factory, then assembling them on-site – become a key part of the solution.

Our team sat down to look at some of the key issues and how prefab might help.

Dr Tharaka Gunawardena: How could prefab help tackle Australia’s housing crisis?

Due to the diminishing availability of skilled labour and the demand for quicker construction, prefab is fast becoming a necessity more than an option.

While providing the means to build houses with speed but with a reduced labour load, prefab can offer many more advantages.

It can allow construction with minimum on-site congestion, waste generation and pollution by moving away from a labour-oriented onsite operation to a more process-oriented offsite manufacturing and assembly process.

The fact that prefab units, especially volumetric modules (where the whole structure including finishes and fittings are manufactured offsite as modules), can be removed from the main structure for future reuse, relocation or repurposing is also a boon. This reusability contributes significantly to prefab buildings having a much lower life cycle energy.

Construction can also start earlier because prefab panels or modules can be manufactured in the factory while the onsite preparation and foundations works get underway.

Financially, investors in housing projects can start generating revenue much earlier and the construction process itself is significantly less vulnerable to adverse weather, which means projects are finished faster.

At the same time, advanced mass customisation methods in design and manufacturing allows architecturally unique housing designs to be built while allowing for mass manufacturing.

In all areas, prefab is a more than capable option in building high-quality dwellings in a short period of time.

Joyce Ferng: Does Australia’s prefab industry have the capacity to match the government’s housing ambitions?

Victoria’s housing goals align well with the PrefabAUS Prefabrication Industry Roadmap for 2023-2033, setting the stage for substantial economic benefits and cost savings associated with Smart Building, which aims to decrease construction time frames and waste while increasing quality, productivity and affordability.

The roadmap projects that Australia could earn an annual benefit of $AU9 billion by 2033, driven by the efficiency of Smart Building practices and prefabrication.

In the short term, prefabrication is a practical solution to meet Victoria’s pressing housing needs. Its ability to provide speedy and cost-efficient housing makes it a strong choice for the demands of both single dwellings and multi-residential buildings.

One piece of analysis points to Melbourne’s potential for 230,000 granny flats, a fast-track solution to housing shortages, thanks to prefabrication and the flexibility it offers in navigating town planning regulations.

This current surge in housing demand is a catalyst for elevating the prefab industry’s capacity and capabilities, from single dwellings to customised complex multi-residential buildings.But there also is the critical need for strategic initiatives and robust partnerships to provide a foundation for this burgeoning industry – providing answers to housing affordability, climate resilience and carbon reduction through energy-efficient design.

Professor Tuan Ngo: Is the current regulatory framework supportive enough to fast track this many houses this fast?

There is an urgent need for more comprehensive standards and guidelines for the design of prefabricated housing.

The importance of a reliable design approach for modular structures cannot be overstated, as an unsuitable design can significantly impact both project costs and timelines.

Currently, traditional ‘limit state design’ criteria, which includes stability, strength and serviceability, are the prevailing design practice for modular buildings. But the absence of comprehensive design guidelines for prefabricated modular buildings can mean these techniques, even when using innovative materials, fall short of expectations.

To ensure a safe and robust design, the design loads (like the dead weight of the structure, the weight of occupants and finishes, and other attachments or fittings) of any structure must take into account all potential circumstances. The design loads in modular construction are different from those in traditional construction because of their unique loading characteristics (owing to the transportation, lifting and handling stages of a prefab installation).

The construction process itself requires distinct infrastructure – demanding careful consideration of factors like geometric inaccuracies and installation procedures.

Offsite construction requires a highly detailed design at the early stages. This means the design requirements for modular buildings are significantly different from those of conventional structures.

But the current design of modular buildings mainly relies on a conventional design system and lacks the necessary design guidelines – so it’s imperative to establish and implement suitable design guidelines for modular prefabricated housing.

Professor Shan Kumar: Is prefab cost effective in the medium to high rise and multi-residential market?

If it’s well coordinated (by engineers, architects and prefab manufacturers), uses appropriate materials (timber, steel, concrete and other sustainable composites) and smartly executed by skilled prefab-modular contractors, then prefab construction will certainly deliver a cost effective, quality home on time.

More of these projects in the pipeline would encourage prefab contractors to invest in research and development, which in turn, would help achieve simple, smarter, innovative modern methods of construction.

To bring more building contractors into this prefab-modular construction space, there must be a mandatory skills requirement.

Government-initiated grants for research and development as well as low interest bank loans and tax credit initiatives for setting up prefab manufacturing factories would help create interest and reduce barriers to entry.

In terms of regulatory requirements, they must be made easy to make this smart construction a viable alternative to building affordable homes – not just in mid to high-rise apartments, but also in single dwellings and unit developments.

Upskilling the prefab-modular industry, which should start at the student undergraduate level, is the key to successfully getting the required number of affordable home projects completed on time.

Professor Priyan Mendis: In terms of research and development, has there been enough investment to allow these kind of rapid solutions for the housing crisis?

There is a genuine need for more investment into the research and development of modern methods of construction, with prefab as the base.

This need is real – both from the construction industry and academia.

The University’s Centre for Advanced Manufacturing of Prefabricated Housing (CAMPH) which, for five years, worked in strong collaboration with industry pioneers continues to disseminate its knowledge and expertise long after its conclusion.

However, many more areas – like advanced and sustainable materials, factory automation, robotics, financing and value chain issues – still need further development.

Unfortunately, recent trends in government funding have seen less and less attention given to research and development in the construction sector.

The urgent need to solve the housing crisis demands a more significant commitment in government funding to ensure that higher quality housing solutions are provided for future Australian homeowners.

Source: The University of Melbourne