Tokamak Energy has demonstrated a transformative magnet protection technology that improves the commercial viability of fusion power plants.  This next generation technology delivers higher performance than alternative magnet systems. 

Results from the latest tests validate a revolutionary approach to scaling up high temperature superconducting (HTS) magnets, which are highly resilient to plasma disruptions.  The technology, known as “partial insulation”, allows the magnets to be built and operated at power plant size and provides a simpler alternative to traditional superconducting magnet protection systems.  It therefore enhances and accelerates the commercial viability of fusion power.

For the first time, this latest test gives fusion developers an option for a new design of superconducting magnet that will be resistant to damage, reducing the cost and complexity of damage mitigation systems and the threat of downtimeThe world needs energy that is clean, secure, cheap and globally deployable, and the magnets Tokamak Energy is developing will enable this future.  Tokamak Energy’s two world leading core technologies – the spherical tokamak and HTS magnets – are central to the company’s mission to develop economic fusion in compact power plants,” said Chris Kelsall, CEO of Tokamak Energy.

Tokamaks use magnets to contain and isolate a plasma so that it can reach the high temperatures at which fusion occurs.  High magnetic fields are necessary for tokamaks to contain the superheated fuel, and higher magnetic fields enable a smaller tokamak.  High temperature superconductors can create these much stronger magnetic fields and so are important for commercial fusion power.

Building on this success, the Tokamak Energy team is currently manufacturing a new test facility and demonstration system with a full set of magnets.  This will test the interaction of all the HTS magnets and validate their use within a full tokamak system for the first time.  The new magnet system is scheduled for testing in 2022.

Robert Slade, Advanced Technology Applications Director at Tokamak Energy, said:

“This impressive demonstration of partial insulation technology opens the door to a new frontier in magnet technology, enabling the novel technology we have developed for our spherical tokamaks to be utilized in a wide range of emerging applications that need high field compact HTS magnets.”

The full results of the magnet test campaign have been presented by Senior HTS Magnet Engineer, Bas van Nugteren, at this year’s European Conference on Applied Superconductivity (EUCAS 2021) – (see video link below). The benefits of partial insulation for a fusion scale tokamak feature in the recently published peer reviewed roadmap for fusion magnet technology in the Superconductor Science and Technology journal.

About Tokamak Energy

Tokamak Energy is a leading global commercial fusion energy company based near Oxford, UK.  The company is developing the fusion power plant of tomorrow while commercialising the tech applications of today.

Tokamak Energy is pursuing fusion through the combined development of spherical tokamaks along with high temperature superconducting (HTS) magnets.

In the ST-40 fusion prototype, Tokamak Energy has developed the most advanced compact spherical tokamak in the world – a key enabler of commercial fusion.  Plans are underway for the ST-40 to operate at 100m degree plasma in 2021, which will be a key milestone for commercial fusion and the first privately funded fusion module to reach this landmark globally.

Tokamak Energy received five US Department of Energy grants in 2020, creating partnerships with leading expertise in the US National Laboratory System.  The company is partnering with Oak Ridge National Laboratory and Princeton Plasma Physics Laboratory to develop the ST-40.  It has also received a £10m grant from the UK Government as part of investment under the Advanced Modular Reactor (AMR) programme.

Tokamak Energy is working with CERN, the European Organisation for Nuclear Research, on high temperature superconducting (HTS) magnets in developing a proprietary technology that will scale to the large magnets necessary for fusion power modules.  HTS magnets also have applications for particle accelerators, aerospace and for several other industrial sectors.

The company, founded in 2009 as a spin-off from the Culham Centre for Fusion Energy, currently employs a growing team of over 180 people with talent from the UK and experts from around the world.  It combines world leading scientific, engineering, industrial and commercial capabilities.  The company has more than 50 families of patent applications and has raised over £100m of private investment.

Once realised, fusion energy will be clean, economic, and globally deployable – a key enabler for meeting international climate policy goals.

www.tokamakenergy.co.uk

 

0 replies

Leave a Reply

Want to join the discussion?
Feel free to contribute!

Leave a Reply

Your email address will not be published. Required fields are marked *